

An Extremely High I_{sp} Spacecraft Propulsion System

L. P. Forsley (GEC, NASA), Deputy PI, NASA LCF Project

P. A. Mosier-Boss, Ph.D. (GEC) Senior Scientist T. L. Benyo, Ph.D. (NASA), PI, NASA LCF Project

L. A. Dudzinski (NASA)

Chief Technologist, Planetary Science Division

Lattice Confinement Fusion (LCF)¹

Measured Nuclear Reactions:

NASA JSC Linear Energy Transfer Analysis of Solid State Nuclear Track Detectors (CR-39) from two experiments^{2,3} at SRI.

e.g.

 $^{7}\text{Li}(d,n)2\alpha$ 3-body nuclear reaction

Proposed Application:

Lattice Confinement Fusion reaction charged products for high I_{sp} propulsion:

 $D(^{3}He,p)\alpha > 14.8 \text{ MeV proton}, 3.4 \text{ MeV } \alpha$

Pd(d,n)p > 6 MeV proton

 $^{7}\text{Li}(p,\alpha)\alpha$ > two 8.5 MeV α

LCF: Triggered fusion in electron-screened, high-density deuterated metal lattices.

² P.A. Mosier-Boss, et al., ," Detection of high energy particles using CR-39 detectors part 1: Results of microscopic examination, scanning, and LET analysis", *Int. J. of Hydrogen Energy,* **42**, 1 (2017) pp 416-428.

¹ Baramsai, et. al., "NASA's New Shortcut to Fusion Power: Lattice Confinement Fusion Eliminates Massive Magnets and Powerful Lasers", IEEE Spectrum (March, 2022). https://spectrum.ieee.org/lattice-confinement-fusion

Specific Impulse It's all about the exhaust velocity!

- Specific Impulse is a measure of rocket engine efficiency expressed in seconds
 - $I_{sp} = v_e/g_o$ where v_e is the propellent exhaust velocity in m/s, $g_o = 9.8$ m/s²

Propulsion	Exhaust Velocity (v _e)	Specific Impulse (<i>I_{sp}</i>)	Thrust
Chemical	v_e < 4.4 x 10 ³ m/s	$< 4.5 \times 10^2 \text{ s}$	High
Nuclear Thermal	$v_e \approx 9.0 \text{ x } 10^3 \text{ m/s}$	≈ $9.0 \times 10^2 \text{ s}$	High
Solar Electric	$v_e \approx 2.9 \text{ x } 10^4 \text{ m/s}$	≈ $3.0 \times 10^3 \text{ s}$	Low
VASIMR®1,2	<i>v_e</i> ≈1.2 x 10 ⁵ m/s	≈ $1.2 \times 10^4 \text{ s}$	Variable
Nuclear Fusion ³	$v_e \approx 3.5 \text{ x } 10^5 \text{ m/s}$	≈ 3.5 x 10 ⁴ s	High
LCF	$v_e > 1.5 \times 10^7 \text{ m/s}$	> 1.5 x 10 ⁶ s	Variable

High I_{sp} usually means low thrust, but with nearly continuous acceleration!

¹ http://web.mit.edu/mars/Conference_Archives/MarsWeek04_April/Speaker_Documents/VASIMREngine-TimGlover.pdf (2004).

² VASIMR[®]: Variable Specific Magnetoplasma Rocket

³C.H. Williams, L. A. Dudzinski, S. K. Borowski and A. J. Juhasz, "Realizing "2001: A Space Odyssey": Piloted Spherical Torus Nuclear Fusion Propulsion", NASA/TM-2005-213559.

An Extremely High Isp Propulsion System

- Alpha particles > 6 MeV have exhaust velocities approaching 5% speed of light!
 - $c = 3x10^8$ m/sec (speed of light in vacuum)
 - $v_e > 1.5 \times 10^7$ m/sec (propellent exhaust velocity)
 - $-I_{SD} > 10^6 \text{ sec}$
- \approx 10,000 times chemical rocket I_{sp}
- ≈ 1000 times Solar Electric Propulsion (SEP) ion thruster I_{sp}
- ≈ 100 times VASIMR® I_{sp}
- Charged particles can be directed by magnetic and electric fields
- Magnetohydrodynamics (MHD) can be used to power the spacecraft with a loss of I_{sp}
- LCF is an inherently low thrust system, but offers continuous acceleration like SEP
 - Thrust can be traded off against I_{sp} by heating and expelling heavier mass